Students must show they are able to find the components of a velocity vector and that they can calculate the velocity vector from the components. Students must be able to get 5 in a row correct to receive credit for this assignment. 


Students must determine the landing location of a projectile that started as a box sliding across a rough surface. Students must first find the speed of the box when it has reached the end of the table and then treat the box as a projectile. 


Students must determine the horizontal speed of a projectile based on the distance that it travels and other given information. Students must find the time of flight and put it in milliseconds. Finally, students must find the final vertical speed of the projectile. This problem does not take place on Earth. 


This lab is designed to have students look at some of the different relationships that exist in a right triangle. Students will be able to change the xleg and yleg of the triangle and then measure the angle and the hypotenuse of the triangle. 


In this problem you will have water flowing through an underground pipe and then passing into a ground level nozzle to create a fountain. Based on the pressure in the pipe you will find the speed of the water in both sections of the pipe and the maximum height of the fountain. 


Students must find the value of the amount of stretch that will occur to a spring on another planet. 


Students must determine the flow rate and speed of the water leaving a faucet based on the properties of the beverage dispenser that it is coming from. 


Students must find the value of the spring constant based on direct measurements of length. 


This lab is designed to have students find the relationships that affect the stopping distance and stopping time of a car on a roadway. Students will be able to modify the tires, road surface, the mass of the car, gravitational acceleration and the initial speed of the car. Graphs showing how each factor affects the stopping distance and stopping time can be created from your data. 


Students must find out the strength of the gravitational force on a ship that is at rest on a Kuiper Belt Object (KBO). 


In this problem you must determine the decay constant and halflife of an isotope based on the activity data of the isotope as a function of time. 


In this problem you must determine the activity of a radioactive sample by measuring the counts per minute that are detected by a sensor. 


Students must determine the speed of PacMan in the xdirection, ydirection and in total. 


Students must determine the speed of PacMan in different units based on their timing of him across the xaxis. 
